
www.manaraa.com

A Bayesian Reliability Growth Model for Computer Software

B. Littlewood; J. L. Verrall

Applied Statistics, Vol. 22, No. 3. (1973), pp. 332-346.

Stable URL:

http://links.jstor.org/sici?sici=0035-9254%281973%2922%3A3%3C332%3AABRGMF%3E2.0.CO%3B2-5

Applied Statistics is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri May 25 15:51:05 2007

http://links.jstor.org/sici?sici=0035-9254%281973%2922%3A3%3C332%3AABRGMF%3E2.0.CO%3B2-5
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html

www.manaraa.com

Bayesian Reliability Growth
~ o d e lfor computer Software

By B. LITTLEWOODand J. L. VERRALL

The City University

SUMMARY
A Bayesian reliability growth model is presented which includes special
features designed to reproduce special properties of the growth in reliability
of an item of computer software (program). The model treats the situation
where the program is sufficiently complete to work for continuous time
periods between failures, and gives a repair rule for the action of the pro-
grammer at such failures. Analysis is based entirely upon the length of the
periods of working between repairs and failures, and does not attempt to
take account of the internal structure of the program. Methods of inference
about the parameters of the model are discussed.

Keywords: 	RELIABILITY GROWTH ; COMPUTER SOFTWARE ; RELIABILITY ; BAYESIAN
RELIABILITY

1. INTRODUCTION
DURINGthe past few years a vast literature has grown up concerning the reliability
of hardware systems. Much of this research has been centred upon systems of
electrical and electronic components, such as those comprising the hardware of
computing systems, but as far as we know there has been comparatively little effort
devoted to the software reliability of such systems. To anyone with experience of
complex hardwarelsoftware systems (e.g. multi-processing computers, process
control systems, etc.) it will be apparent that sooner or later someone has got to grasp
the nettle of software reliability : this paper is a tentative suggestion for a mathematical
model in a rather restricted framework. We would not have the temerity to suggest
that all the hardware reliability problems have been solved; clearly, research is going
to continue in this field for an indefinite time. What we do believe, however, is that
knowledge of the hardware reliability of the aforementioned mixed systems has far
outstripped understanding of the software aspects of their reliability.

The research which is reported in the remainder of this paper deals with a model
for software reliability alone: no attempt is made to model the very important case
of the interaction of hardware and software failures. Because of the lack of natural
degradation in software, we proceed by constructing a reliability growth model-
we hope that the special features of our model are sufficient to provide a first approxi-
mation to the more important aspects wluch are peculiar to the reliability of software.
Although these special features of our model are designed to represent software
reliability, it may be that workers in some branches of hardware reliability will find
our results of value (we have in mind here certain types of burn-in testing).

332

www.manaraa.com

333 BAYESIAN RELIABILITY GROWTH MODEL

2. THERELIABILITY MODELGROWTH
Our interest in the problem of reliability of software has been concerned with

computer systems in the large power stations of the CEGB. The "data" here are a
stream of information (generally cyclically scanned) from something of the order of
10,000 sensing devices, usually via analogldigital converters (ADCs). These input
streams represent temperatures, pressures, flow rates in turbines, core temperatures in
the nuclear installations, and so on. Typical functions of the computer in such
installations are: the display of summaries of the multidimensional input stream in
such forms as the operator of the generating unit can easily assimilate (generally on
visual display units); providing general logging services; alarm analysis; semi-
automatic run-up of turbines, etc. In addition, the computer is often expected to
provide data on station efficiency, fuel consumption, etc., and sometimes to provide
off-line general programming facilities. The software to support such a complex
service is necessarily fairly extensive (in one typical case requiring 17 man-years of
programmer effort), and hence will virtually never be error-free.

We have so far used terms such as "reliability" and "error-free" in a way which
suggests that their meaning is self-evident: either intuitively, or by analogy with
reliability concepts already developed and rigorously defined for use with hardware
systems. This is unfortunately not the case: in particular it seems impossible to
define "error" in an unambiguous way, and here we encounter the first problem in
modelling software reliability. It may be, in fact, that situations arise which the
original program specification did not envisage: we can therefore think of the model
as improving, not merely the program. Because of this and other difficulties we have
abandoned any attempt at an analysis in terms of the number of errors in the pro-
gram, and instead have concentrated on treating failures of the program. There are
some difficulties even in this approach, but generally it is obvious when a program
has failed to function satisfactorily-in fact, in many cases complete stoppage occurs.
Some cases of controversy might arise (e.g. minor failures going undetected for a
time), but we hope that by adopting a subjectivist approach we can overcome these:
essentially by defining a failure to be what the programmer (or operator) says is a
failure. This judgment, naturally, will be based upon objective criteria obtained from
sources such as design specifications.

By using failures rather than errors in our analysis we do not mean to imply that
the concept of an error is entirely without value. On the contrary, when a failure has
occurred in a program it will usually be the programmer's job to inspect the program,
locate the "errors" and carry out such action as will improve the reliability of the
prbgram. But this reliability will be defined in terms of failures of the system:
specifically in terms of the time-to-next-failure distributions (or parameters of such
distributions). We shall not enquire too closely of the programmerloperator what
methods he uses to locate "errors" and elirilinate them-we shall merely require that
he behaves in such a way as to try to improve the reliability of the program whenever
a failure occurs. It is in this last feature that we believe our model differs most
significantly from existing reliability growth models.

Obviously the internal structure of the program will affect its reliability. The
extent of our knowledge of such structure will vary widely in practice, but in general
this knowledge should be taken account of in a reliability model. Usually we shall at
least know the logical arrangement of certain indivisible blocks (subroutines), perhaps
by way of a flow chart or similar logical breakdown. It is common to write and test
such blocks individually, so a reliability model for such an indivisible block is a

www.manaraa.com

334 APPLIED STATISTICS

prerequisite of a general software reliability model. In this paper we deal only with a
model for the reliability of a block like these, leaving the problem of combining
knowledge of the logical interconnections and the reliabilities of the different blocks
until a later date (it is perhaps worth mentioning that this problem seems difficult: an
answer will depend upon the interconnections which transfer control among blocks,
and the traversing of such interconnections will probably be data-dependent in many
instances). In spite of this restriction to a "black-box" approach, we are confident
that the special features of our model make it suitable for representing, at least to a
first approximation, the growth in reliability at a certain stage in the creation of a
program. In all of what follows we shall refer to "the program": this may be one of
the blocks mentioned already, or it may be the complete structure of such blocks. We
shall treat it as though it had no known structure-but we must bear in mind that a
better model will be obtained when it is learned how to incorporate any structural
information we have.

Our next restriction, this time less important, is to continuous time processes. We
shall treat a program as a black-box system with failures separated by time intervals
which can be regarded as continuous random variables. Continuity of the time
variable was a natural choice for the real-time systems in power stations which
prompted our investigations, but discrete-time systems (e.g. batch-processing) have
reliability problems and we hope to look at these in later work. It could be argued, in
fact, that all computing systems work in discrete time: letting the processor cycle time
be the basic unit of time, or, in our case, the cycle time of the ADC scanners.
However, the basic unit of time in these cases is so small compared with typical times
between failures that continuous time methods seem more appropriate.

A typical history of our program is given in Fig. 1. We assume that at time zero
the program is run on the computer and works satisfactorily until time t,, when the

time >
f I f 2 t,-~ ti

0

1st 2nd (i-2)th (iyl)th ith
failure failure failure fa~lure failure

FIG.1. Typical failure history of a program for our model.

first failure occurs. The programmer then "repairs" the program, it works satis-
factorily for time t,, is repaired again, and so on.?

The choice of time origin, 0, is to some extent arbitrary. Clearly we must have
reached a stage in the program's development when it will run for some time before
failing. This means that compilation errors and the more crude execution errors have
been eliminated already; modelling of the reliability growth at these stages of program
writing will probably be a discrete-time exercise.

The object of the model is to create a repair rule which as nearly as possible
reproduces the effect of the programmer's action upon the program. We proceed as
follows:

f We shall, as far as possible, use the convention of denoting random variables by capital
letters, and the realizations of random variables by lower case letters: thus ti is a particular obser-
vation of the random variable Ti.

www.manaraa.com

335 BAYESIAN RELIABILITY GROWTH MODEL

Let the random variable Ti, the running time between repair of (i- 1)th failure
and occurrence of ith failure, have a probability density function (p.d.f) denoted by
f{t, X(i)). We shall assume that the parameter X is some failure rate measure (by this
we mean that a program with small X is better than a program with large A). The
intention of the programmer when he carries out a repairis to make the program
better than it was before the failure occurred (i.e. more reliable, or less likely to fail
in a given time period). In other words the programmer intends by his repair action
to diminish A, making X(i) < X(i- 1) for all i. However, he cannot be sure that a
particular repair has achieved this intention-in fact programmers recount tales of
software which has been made catastrophically worse by a "repair". It is here that
software reliability differs from most burn-in testing of hardware. In burn-in testing
it is usually possible to know the characteristics of a replacement component; our
programmer, however, usually does not know very much about the characteristics of
a rewritten portion of program, nor how it will react with the surrounding software.
It is quite possible that he will introduce a new source of failures in his repair attempt.
We resort to the Bayesian technique of allowing the failure-rate parameter, h(i), to
have a distribution. Let the p.d.f. of h(i) be denoted by g(1, i, a) where a is a parameter
or vector of parameters. We can now easily formulate a mathematical condition to
represent the programmer's intention concerning the repair rule. Instead of being
certain that the failure rate has diminished after his repair action, we argue that it is
probable that this has happened, i.e.

P{A(i) < l } >P{X(i- 1) <I}, for all I, i. (1)

Letting the distribution function of the parameter X(i) be denoted by

we have from (1)

G(1, i -1, a) <G(1, i, a). (2)

Since X is a failure rate, g(1, i, a) = 0 for -a< l<0.
In the model we have assumed that the repair times are zero, for simplicity. It is

a fairly easy matter to adjust the results which follow to take into account constant
repair time, but this does not seem very realistic. We hope to extend the model at a
later date by incorporating realistic random variables for the repair times; however,
there seems to be no consensus of opinion on how the distributions of these random
variables should vary (if at all) with i. Do programmers spend move effort in elimin-
ating the later errors, when failures are very infrequent and they have more time at
their disposal? Or do they spend less effort, on the grounds that infrequent failures
are sufficiently tolerable not to warrant expenditure of costly programmer time?

As our model stands, we have the problems of choosing, firstly, a suitable
parametric family for the failure times and, secondly, a suitable parametric family
with monotonically ordered distribution functions for the failure rates. Neither of
these problems presents a great deal of difficulty and we shall give suitable families
later.

www.manaraa.com

336 APPLIED STATISTICS

Let us now assume that we are in the position of having collected data t,, t,, . . .,t,
representing n failures of a program. Our programmer will carry out a repair of the
nth failure, using the same criteria as before. We wish to make inference about the
distribution of the time to the (n+ 1)th failure, based on our past evidence.

Inference initially centres upon a . Let po(a) be the prior distribution for a , and
pl(a) be the posterior distribution for a. Then, by Bayes's theorem,

where by p(.) we shall mean a joint p.d.f. or likelihood. Now

p(data1 a) =p(T, = t,, T, = t,, . . .,T, = t, I a)

Hence

Having obtained p,(a), we could proceed by using

as p.d.f. of X(n+ 1), if interest centred upon failure rate itself. Probably of more
interest would be the p.d.f. of T,,,

=If(t,+1, 1) (n + 1, a)p,(d da] dl.

Although these integrals seem analytically rather daunting for general f (.) and
g(.) functions, we show that for our choice of parametric families it is possible to
make considerable analytical headway. When the f(.)and g(.) families are so
chosen that analytic answers are not available, it should be possible to use numerical
integration techniques, but this would make the model less easily usable.

www.manaraa.com

337 BAYESIAN RELIABILITY GROWTH MODEL

3. THE MODEL WITH SUGGESTED OF DISTRIBUTIONALCHOICE FAMILIES
The choice of parametric families satisfying our requirements which combines

realism with mathematical tractability is as follows :

where #(i) is a monotonically increasing function of i.
The exponential distribution of (7) for time between failures is a natural choice.

If we regard a failure as being a datalsoftware interaction (a program may work
perfectly with data from a subset of the sample space, but fail when a data point comes
from a particular region of the sample space) it is natural to consider failures as
constituting a random process (Poisson process), since the data stream is itself most
simply regarded as a random process. This distribution already has an honourable
history of use in hardware reliability, so its familiarity is an extra justification for its
choice.

The choice of a family of Gamma distributions for the failure rates is largely
justifiable by its flexibility (having two parameters), correct range (0,co) and
mathematical tractibility. Of the two parameters in this family, #(i) and a, we have
chosen to concentrate our reliability growth in the former. Since #(i) is a scaling
factor, it is easy to see that a monotonically increasing #(i) guarantees the ordering
of the distribution functions in i (see Section 2, (2)). The programmer's intention, but
not certainly, of improving the program is thus represented by this function #(i).
We shall initially assume #(i) to be completely specified, but will consider methods of
estimation later in the paper.

Assumption of a fixed #(i) in this way represents an assumption of a kind of time
stationarity in the behaviour of the programmer. His behaviour will vary as the
program develops, i.e. as the failures occur and i increases, and it may even differ from
program to program (for a more complex program it would appear reasonable to
give a programmer a more slowly increasing #(i), for example). But we assert that
given a program, a programmer and a stage in the development of the program, the
action of the programmer upon the program at this stage is fixed. Saying that #(i) is
fixed for a given program/programmer configuration and given i does not, of course,
tell us at what value it is fixed. This problem of estimating #(i) does not seem easy.
As we have mentioned, some estimation methods are considered later.

Proceeding by substitution of these f(.),g (.) functions into the results of Section
2 we have

[f(ti, 1) g ~ , I lexp (- Iti) #(i) {#(i)1IE-l exp {- $(i) lIdl
i, a)dl =

l-'(a)

www.manaraa.com

338 APPLIED STATISTICS

where ki = {#(i))/{#(i)+ti). Hence the posterior distribution of cu is

Assuming a uniform prior distribution we have

This is of Gamma form, hence

where

The distribution of failure rate given by (5) does not seem tractable analytically
(although its percentage points could be obtained numerically in any particular case),
so we proceed directly to obtain the p.d.f. of Tn+,. We require, changing the order of
integration in (6):

Hence, the p.d.f. of Tn+,is

da

which reduces to

We can obtain percentage points of this distribution analytically, since its distri-
bution function is easily obtainable. Let F(tn+,)denote this distribution function, i.e.

www.manaraa.com

BAYESIAN RELIABILITY GROWTH MODEL 339

If we denote by y;n+l) an upper 100a% confidence bound of this distribution, i.e.

P[T,+, <yp+l)~a=

we have

Given a history of the process in the form t,, t,, ...,t, and knowledge of +(i), this
bound is easily calculable.

It should be emphasized that we are here dealing with the distribution of T,,,,
the time to (n +1)th failure measured from the instant at which the nth repair is effected.
A more general approach would consider the time-to-next-failure measured from an
arbitrary time-point. We propose to obtain this distribution now.

A typical history of such a process is given in Fig. 2. This differs from the previous
analysis in the observation t,, which is the time which has elapsed between occurrence

t ime ___,
e m - - - -

t~ f 2 tn-I t n T
0

1st 2nd (n-2)th (n-l)th nth
failure failure failure failure t failure

"now " (in future)

FIG. 2. Model when time-to-next-failure is measured from an arbitrary origin ("now" in Figure).

of the last (i.e. (n -1)th) failure and "now", the time origin of our time-to-next-failure
random variable, T. Observations t,, t,, . . .,t,-I are times between failures (or, more
strictly, between instantaneous repair of one failure and occurrence of the next) as
before. Now, in the general model we have

x SP{no failure in (0,t,) 1 I) g(1, n, a)dl. (15)

Using the same f (.), g(.) as in (7) and (8) we obtain

P{no failure in (0, t,) 11) = exp (- It,)

and so

where k, = {#(i)}/{ti ++(i)) as before

www.manaraa.com

340 APPLIED STATISTICS

Assuming a uniform prior distribution for a we obtain the posterior distribution

where

This is again of Gamma form, cf. (lo), hence

where

To get the p.d.f. of T, the time-to-next-failure (see Fig. 2), we require

Then the p.d.f. of T is

Again it is easy to obtain the distribution function analytically, and consequently
the percentage points of the distribution. In particular an upper 100a% confidence
bound is

Although these distributions and bounds for time-to-next-failure are, we believe,
of potential value in practical situations, a measure which produces greater theoretical
insight into the model is instantaneous,failure rate estimate X(t) = X(tl, t,, ..., t,).
define this, for the instant "now" in Fig. 2, as follows:

We

P(a failure occurs in a time interval of length 6t beginning at "now"

Itl, tz, ..., t,) = X(t) . at. (21)

If we denote the p.d.f. of T i n (19) by f (t) it follows that

We must emphasize that X(t) is a function of the entire failure history

it is not a parameter of an exponential distribution, but an instantaneous failure rate
estimate. In fact we are interested in the way X(t) changes as t, the history, develops,

www.manaraa.com

341 BAYESIAN RELIABILITY GROWTH MODEL

since decreasing X(t) means increasing reliability and vice versa. Consider first the
change in X(t) during one of the periods of working between failures: this means that
n remains fixed, as do t,, t,, ..., t,-,, but t, increases. It follows that X(t) decreases
monotonically since the second term in (22) does so. This accords with intuition:
we would tend to believe a system more reliable the longer the time of perfect working
which has elapsed since the last failure. The other kind of change occurs at a failure
point. Clearly X(t) is not defined at such a time instant, but we can obtain values of
h(t) at an instant t = (t,, t,, ..., t,) immediately preceding a failure, and at

(tl, t2, ...,tn, tn+J,

where t,+, = 0, immediately following the instantaneous repair. The second term in
(22) remains constant in this change, and the first term is transformed from n/{$(n)}
into (n+ l)/{$(n +1)). This means that the repair attempt decreases the instantaneous
failure rate (improves reliability) if

n + l n

This occurs if $(i) increases more rapidly with i than a linear function of i. We
would suggest that this happens in practice.

The instantaneous failure rate of (22), therefore, partitions into two parts, each
of which shows a tendency to decrease: the first only at repairs, and only for suitably
rapidly increasing $(.) functions; the second only during periods of perfect working
between failures. A plot of X(t) against (real) time is shown in Fig. 3 for a typical
portion of the history of a program.

I I
I I

\
\ I I

I

'<I 1 III

I I
I +-------I

ith (i+l)th time
failure failure >

FIG.3. Portion of a plot of instantaneous failure rate estimate, &t), against time.

www.manaraa.com

342 APPLIED STATISTICS

We conclude this section with a note about the growth parameter $(i). We have
tended to imply that a strict increase must take place in this function at each repair:
this may be unrealistic since in some cases which we have encountered the programmer
takes no action at all, merely restarting the program (implying that the failure is a
highly data-dependent one, and that the program will work when restarted at a
different point in the data stream). In such cases it would be reasonable to keep the
$(.) function constant, i.e. $(i) = $(i+ 1)if no repair is attempted at the ith failure. As
long as we know at which failures the programmer behaves in this way, i.e. $(i) is
specified for all i, we can use (12), (13), (14), etc. as before. Difficulties arise if we try
to project into the future, however, since future #(i) will not be defined. In what
follows we shall assume that #(i) is completely known.

It is also perhaps worth mentioning at this stage that the "repair" at the ith failure
is not necessarily of the ith failure. Usually a programmer's action will be directed
towards eliminating the cause of the failure which has just occurred, but this need not
be so. We are thinking here of cases where it is convenient to restart the program
immediately a failure has happened, leaving the correction of the softwave until a
leisurely perusal has taken place. All that our model demands is that when a pro-
grammer intervenes he does so with the intention of improvement, and that such
interventions take place only when the program has failed of its own accord. We hope
to remove this final condition in later work.

4. PROBLEMS THE GROWTH $ (i)CONCERNING FUNCTION
The model we have presented so far in this paper has assumed knowledge of the

function $(i) which governs the discrete reliability change at repair attempt i. We had
hoped that this function would represent an invariant property of a particular
program/programmer configuration-perhaps varying from programmer to pro-
grammer and even from program to program (for a fixed programmer), but otherwise
constant. This assumption has been questioned, it being suggested that it would be
more realistic to regard one of our histories as being composed of succeeding intervals
consisting of different patterns of usage. It is envisaged that the times at which one
pattern of usage succeeds another would be known, hence our model with a constant
$(i) function would be applicable for the homogeneous behaviour between two such
times. We are faced, then, with the problem of how to choose a $(i) function which is
applicable to a particular pattern of usage. Of course, even with our naive assumption
of complete invariance of the $(i) function we face this problem to some degree: we
have to choose $(i) at the outset in some way, even though it will be a once-and-for-all
exercise. It is worth mentioning, too, that even if the functional form of $(.) is known,
we still have the problem of what values to begin with, since our choice of time origin,
0,is arbitrary.

4.1. Full Bayesian Analysis
If we reject the assumption that #(i) is known completely the most obvious

mathematically tractable course of action is to make the assumption that $(i) is a
member of a known parametric family, $(P, i), with unknown parameter(s) P.

We proceed as in the previous sections with an expanded parameter space (the
p's having the same status as a's previously). Thus, in a notation which is an obvious
extension of that used before:

f (t, A) = A exp (- At), t >0,
=0 , t<O

www.manaraa.com

343 BAYESIAN RELIABILITY GROWTH MODEL

and

Choosing, say, a uniform joint prior distribution for (a, @) we can find the joint
posterior distribution p,(a, P). The posterior distribution of [3 is obtained from this
by integrating out a. Unfortunately this distribution appears to be completely
intractable: the most it seems possible to salvage is a numerical procedure for
compuJing an estimate of P, say a (e.g. mean, median, mode of p,(P)). We could then
use $(P, i) and proceed as in previous sections.

The full Bayesian analysis, however, would find the distribution of T,,,
namely

(cf. (6)),

(25)

The inner integrals are obviously completely intractable, and the work involved in a
numerical approach will be considerably greater than that required to find as
suggested.

It would seem, therefore, that the most we can salvage from this is a method for
computing 0, albeit at the price of considerable computing effort. Such effort may be
acceptable if we can assume a constant pattern of usage (hence $), in which case it
will be a once-and-for-all exercise. However, if we are in the situation of requiring
constant updating of the $(.) family, as in the case of different patterns of usage, such
a heavy computing load would seem prohibitive.

4.2. A Method based on Probability Integral Transforms
Apart from the computing difficulties of the previous method, it suffers from the

(slight) disadvantage of assuming a parametric family: it would not enable us to
choose between two $(.) functions from different families. The following method
overcomes this problem by providing a computationally simple non-parametric
approach to choosing among a class of given functions. The method relies on the
fact, which is rather surprising, that we can obtain at each stage a confidence bound
for the next time to failure, conditional upon the previously observed times between
failures.

Observe times between failures t,, t,, ...,t,, which are realizations of the random
variables TI, T,,...,T,. At the ith stage of this process we can find from (12) the p.d.f.
of T,, say f(ti), which we shall write f(t,I ti-,, ti-,, ...,t,, t,) for clarity, since this p.d.f.
depends on the history preceding the present stage. For each i,x, we can calculate
an upper 100x% confidence bound from (14).

Denote this by t,(x), i.e.

P{T,< t,(x)} = x. (26)
Then corresponding to our data t,, t,, . . .,t, we have, for each x in (0, l), a sequence

tl(x), t,(x), ...,t,(x) of 100x% bounds.
Define a sequence {&(x)) of random variables by

Y,(x) = 1, if ti < ti(x),
= 0, otherwise

www.manaraa.com

344 APPLIED STATISTICS

and let

Y(x) = n-l Yi(x)
i

= proportion of t,'s in data which satisfy ti < t,(x).

Clearly

E(Y(x)) = x (28)

from (26) and (27).
Our procedure, therefore, is to plot Y(x) against x. The result will be a step

function, as shown in Fig. 4, which, if our choice of $(.) function is correct, will

FIG.4. Typical Y(x)step function.

satisfy- (28) and hence fluctuate about a mean line which is the line of unit slope
through the origin. In other words the "closeness" of the step function to this line is
a measure of the "correctness" of the $(.) function.

It can easily be seen that each step in Y(x) is of magnitude lln, and that they
occur at points xi given by the solutions of

ti = ti(x), i = 1,2, . . .,n. (29)

In Fig. 4 these xi are indicated in ascending order by x (~ , .It can be shown easily that
requesting closeness of Y(x) to the straight line is equivalent to specifying that xi are

www.manaraa.com

345 BAYESIAN RELIABILITY GROWTH MODEL

distributed uniformly on (0,l). That is x,, x,, . . .,x, can be regarded as a random
sample from a uniform distribution on (0, l), and Y(x) as a sample distribution
function from this distribution. Tests such as Kolmogorov-Smirnov, or W2 can be
used to measure goodness-of-fit of this sample distribution function (see Kendall and
Stuart, 1961, pp. 450-457), since the xi are easily computable, being given by?

The main consequence of the computational silnplicity of this method is that it
provides us with an attractive alternative to the numerical integration procedures of
Section 4.1, when we make the same parametric assumptions as are made there. We
recall that the method described in Section 4.1 assumed $(i) to be a member of a
family #(@,i). For any @ in the allowable parameter space we can compute a
Kolmogorov-Smirnov, or W2, or any other suitable statistic of goodn_ess-of-fit. It
is an easy matter to search the allowable @-space and find that value, @ say, which
optimizes the goodness-of-fit statistic (or even produce a 100ar% confidence region of
the ,&space).

Numerical results illustrating this technique on simulated t data are presented in
the Appendix.

ACKNOWLEDGEMENT
The authors wish to express their gratitude to the CERL, Central Electricity

Generating Board, U.K., for their suggestion of this problem, financial support and
continuing encouragement.

REFERENCE
KENDALL,M. G . and STUART, A. (1961). The Advanced Theory of Statistics, Vol. 11. London:

Griffin.

Method of Section 4.2 applied to Simulated Data
The 80 observations of times between repair and failure given in Table 1 were

generated using the model of (7) and (8) with

#(i) = exp (2.0 +0.2i).

The method of Section 4.2 proceeds by calculating a set of goodness-of-fit
statistics using #(i) = exp (Po +Pl i) for different (&,,PI). We used the n W2 statistic
(see Kendall and Stuart, 1961), so our estimate (&,PI) is the point in the @ space
which minimises n W2. We found

The minimum value of the Kolmogorov-Smirnov statistic (see Kendall and
Stuart, 1961), on the other hand, occurred at

7 Since x, is indeterminate we ignore it and in practice base our test upon the remaining
(n-1) x's. Such a small reduction of the sample size will not result in an appreciable loss of
information, since we shall generally be dealing with fairly large n values.

www.manaraa.com

APPLIED STATISTICS

TABLE1

Eighty simulated times to failure, rounded to three significant jigures (read left to right,
last four rows x 1,000)

These results are good for the "growth parameter", p,, being close to the true
value of 0.2. For the "initializing parameter", 13,, the method does not produce
estimates very close to the true value of 2.0. This probably suggests the relative
unimportance of this parameter, since the effect of powill quickly be swamped by the
growth in exp (p, i).

It is encouraging that the Kolmogorov-Smirnov statistic produces such good
results (better than nW2 in this case) as it is relatively easy to compute.

As can immediately be seen from our table of t,'s, the growth in reliability with
this $(.) function is very rapid. We would therefore like to emphasize that the object
of this exercise was not to produce particularly realistic data but to check the efficiency
of our suggested inferential procedure.

